youngs modulus of elasticity of nicrome wire essay
This is avoided simply by not adding the weights whenever there are folks on the wood block area of the cable. Apparatus – Wire (around 3. your five meters) – 2x wooden blocks – 1 G-clamp – Pounds Hook – 12-15 weight load. (100g each) – Accuracy and reliability – 0. 1g in 100g = 0. 1% error – Roller Pulley – Celotape – Micrometer Screw-gauge. – Accuracy – 0. 01mm in 0. 19mm sama dengan 5. 36% error – Scale (e. g. Rule) – Reliability – 2mm in 3570 mm sama dengan 0. 06% error Total Approximate problem range: five. 52% sama dengan 6% EFFECTS: Note: I have taken the force of one Newton as the where the file format because I discovered it difficult to measure the length of the wire with no pulling onto it.
This was because the wire was coiled originally and so kept trying to go back to its original coiled state. This means my wire length will be inaccurate to approximately half a millimetre. This would not have affected the permanent length of the wire because the wire enters the plastic region only after around 10 Newton’s (Represented on a graph of axis force against extension) The slip mentioned in the results refers to how much the wire has been pulled from the two markers, which is referred to in the method.
The slip is evidently not part of the extension and will be taken into account.
Original Length of the Wire = 3570mm. = 3. 57 meters Original Diameter of the wire = 0. 175mm = 1. 75 x 10-4 meters. Area = 0. 0000000962m3 = 6. 92 x 10-8m3 These results may be unduly accurate and this will be taken into account in the conclusion. As the Young’s Modulus concerns the region where Hookes Law is obeyed, then this will be the region where the extension increases in small equal amounts. In this case it is 1-9 Newton’s here. As this only caused small extensions of 1mm per each weight added, this is where the biggest errors will occur.
Ruler to half millimetre accuracy 0. 5mm in 8mm = 0.5 / 8 100 = 6. 25% CONCLUSION What is Young’s Modulus Of Elasticity for Nicrome Wire? Young’s Modulus For Elasticity is defined as Stress Over Strain. So (Force Length) (Extension Cross-sectional Area).
This is the gradient of a graph representing stress over strain. (In the region where Hooke’s Law is obeyed) Force (N) Stress (Pa) Extension (m) Strain (Pascals) Young’s Modulus (Giga Pascals) The gradient of the graph represent the stress over the strain. The gradient over the? y/? x region is big enough to provide a good average. It is more accurate than the tabulated result because it contains the linear y=mx+c graph (This is due to Hook’s Law) which is the line of best fit for the results (The average).
The y-intercept on the graph is very close to the origin, which is what would be expected because if there were no stress (e. g. no force acting on the wire) then there would be, by definition, no strain, as there would be no extension occurring. This shows that this area is obeying Hook’s Law because using the y=mx+c equation, this would say c i? 0 (approximately equal to 0). So y=mx where ‘t’is the stress, ‘x’ is the strain, and ‘m’ is the constant; being Young’s Modulus. Conclusion:
My results are accurate, because the graph was a very straight line, as all the points could be plotted to a good degree of accuracy to the original plot from the y=mx equation; Stress = (5. 52 x 1011 ) x Strain :->Wherever 5. 52 x 1011 Gpa is my result for Young’s Modulus for Nichrome Cable Stress (Pa) Strain Stress=(5. 52 by 10^11) back button Strain Mistake From Initial Dividing the consequence of multiplying the tension by my Young’s Modulus by the first, and growing by 75 calculated the error from original line.
For every multiplication I got a a result of 6th. 72%, which is close to my own approximate problem range of 6%. My benefits compared to my personal prediction: My results, did not entirely go along with my prediction. From first experiments the Young’s Modulus would be around 180 Grade point average.
you